Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 287
1.
Microb Biotechnol ; 17(5): e14470, 2024 May.
Article En | MEDLINE | ID: mdl-38683675

Avermectins (AVEs), a family of macrocyclic polyketides produced by Streptomyces avermitilis, have eight components, among which B1a is noted for its strong insecticidal activity. Biosynthesis of AVE "a" components requires 2-methylbutyryl-CoA (MBCoA) as starter unit, and malonyl-CoA (MalCoA) and methylmalonyl-CoA (MMCoA) as extender units. We describe here a novel strategy for increasing B1a production by enhancing acyl-CoA precursor supply. First, we engineered meilingmycin (MEI) polyketide synthase (PKS) for increasing MBCoA precursor supply. The loading module (using acetyl-CoA as substrate), extension module 7 (using MMCoA as substrate) and TE domain of MEI PKS were assembled to produce 2-methylbutyrate, providing the starter unit for B1a production. Heterologous expression of the newly designed PKS (termed Mei-PKS) in S. avermitilis wild-type (WT) strain increased MBCoA level, leading to B1a titer 262.2 µg/mL - 4.36-fold higher than WT value (48.9 µg/mL). Next, we separately inhibited three key nodes in essential pathways using CRISPRi to increase MalCoA and MMCoA levels in WT. The resulting strains all showed increased B1a titer. Combined inhibition of these key nodes in Mei-PKS expression strain increased B1a titer to 341.9 µg/mL. Overexpression of fatty acid ß-oxidation pathway genes in the strain further increased B1a titer to 452.8 µg/mL - 8.25-fold higher than WT value. Finally, we applied our precursor supply strategies to high-yield industrial strain A229. The strategies, in combination, led to B1a titer 8836.4 µg/mL - 37.8% higher than parental A229 value. These findings provide an effective combination strategy for increasing AVE B1a production in WT and industrial S. avermitilis strains, and our precursor supply strategies can be readily adapted for overproduction of other polyketides.


Acyl Coenzyme A , Ivermectin , Ivermectin/analogs & derivatives , Metabolic Engineering , Metabolic Networks and Pathways , Polyketide Synthases , Streptomyces , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/enzymology , Metabolic Networks and Pathways/genetics , Ivermectin/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Arch Insect Biochem Physiol ; 115(3): e22101, 2024 Mar.
Article En | MEDLINE | ID: mdl-38500444

The Chinese white wax scale insect (CWWSI), Ericerus pela, can secret an amount of wax equivalent to their body weight. Previous studies demonstrated the fatty acyl-CoA reductase (far3) plays a pivotal role in wax secretion of CWWSI. The high expression of far3 is crucial for the massive wax secretion. However, the transcription regulation of far3 was not clear. To identify regulatory factors that control the expression of far3, the assay for transposase-accessible chromatin (ATAC) and yeast one-hybrid (Y1H) were carried out in this study. The ATAC sequencing of the CWWSI at the early wax-secretion stage ATAC-seq resulted in 22.75 GB raw data, generated 75,827,225 clean reads and revealed 142,771 peaks. There was one significant peak in the 3 kb upstream regulation regions. The peak sequence is located between -1000 and -670 bp upstream of the far3 transcription start site, spanning a length of 331 bp. This peak sequence served as bait for creating the pAbAi-peak recombinant vector, used in Y1H screenings to identify proteins interacting with far3 gene. The results indicate a successful CWWSI cDNA library construction with a capacity of 1.2 × 107 colony forming unit, a 95.8% recombination rate, and insert sizes between 1,000 and 2,000 bp. Self-activation tests established that 100 ng/mL of AbA effectively inhibited bait vector self-activation. Finally, a total of 88 positive clones were selected. After sequencing and removal of duplication, 63 unique clones were obtained from these screened colonies. By aligning the clone sequences with full-length transcriptome and genome of CWWSI, the full-length coding sequences of these clones were obtained. BlastX analysis identified a transcription factor, nuclear transcription factor Y beta, and two co-activators, cAMP-response-element-binding-protein-binding protein and WW domain binding protein 2. Reverse transcription quantitative polymerase chain reaction analysis confirmed that their expression patterns were consistent with the developmental stages preceding wax secretion and matched the wax secretion characteristics during ovulation periods. These results are beneficial for further research into the regulatory mechanisms of wax secretion of CWWSI.


Chromatin , Hemiptera , Female , Animals , Saccharomyces cerevisiae/genetics , Hemiptera/genetics , Aldehyde Oxidoreductases/genetics , Transcriptome , Transcription Factors/genetics , Fatty Acids , Acyl Coenzyme A/genetics
3.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Article En | MEDLINE | ID: mdl-38228875

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Iron-Sulfur Proteins , Lipid Metabolism, Inborn Errors , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Muscular Dystrophies , Oxidoreductases Acting on CH-NH Group Donors , Humans , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/therapeutic use , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Riboflavin/genetics , Riboflavin/metabolism , Riboflavin/therapeutic use
4.
BMC Genom Data ; 23(1): 64, 2022 08 10.
Article En | MEDLINE | ID: mdl-35948865

BACKGROUND: Diacylglycerol acyl-CoA acyltransferase 1 (DGAT1) has become a promising candidate gene for milk production traits because of its important role as a key enzyme in catalyzing the final step of triglyceride synthesis. Thus use of bovine DGAT1 gene as milk production markers in cattle is well established. However, there is no report on polymorphism of the DGAT1 gene in Ethiopian cattle breeds. The present study is the first comprehensive report on diversity, evolution, neutrality evaluation and genetic differentiation of DGAT1 gene in Ethiopian cattle population. The aim of this study was to characterize the genetic variability of exon 8 region of DGAT1 gene in Ethiopian cattle breeds. RESULTS: Analysis of the level of genetic variability at the population and sequence levels with genetic distance in the breeds considered revealed that studied breeds had 11, 0.615 and 0.010 haplotypes, haplotype diversity and nucleotide diversity respectively. Boran-Holstein showed low minor allele frequency and heterozygosity, while Horro showed low nucleotide and haplotype diversities. The studied cattle DGAT1 genes were under purifying selection. The neutrality test statistics in most populations were negative and statistically non-significant (p > 0.10) and consistent with a populations in genetic equilibrium or in expansion. Analysis for heterozygosity, polymorphic information content and inbreeding coefficient revealed sufficient genetic variation in DGAT1 gene. The pairwise FST values indicated significant differentiation among all the breeds (FST = 0.13; p ≤ 0.05), besides the rooting from the evolutionary or domestication history of the cattle inferred from the phylogenetic tree based on the neighbourhood joining method. There was four separated cluster among the studied cattle breeds, and they shared a common node from the constructed tree. CONCLUSION: The cattle populations studied were polymorphic for DGAT1 locus. The DGAT1 gene locus is extremely crucial and may provide baseline information for in-depth understanding, exploitation of milk gene variation and could be used as a marker in selection programmes to enhance the production potential and to accelerate the rate of genetic gain in Ethiopian cattle populations exposed to different agro ecology condition.


Acyl Coenzyme A , Milk , Acyl Coenzyme A/genetics , Animals , Cattle/genetics , Diacylglycerol O-Acyltransferase/genetics , Ethiopia , Phylogeny , Polymorphism, Genetic
5.
J Exp Bot ; 73(9): 3030-3043, 2022 05 13.
Article En | MEDLINE | ID: mdl-35560190

Triacylglycerols (TAGs) are the major component of plant storage lipids such as oils. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step of the Kennedy pathway, and is mainly responsible for plant oil accumulation. We previously found that the activity of Vernonia DGAT1 was distinctively higher than that of Arabidopsis and soybean DGAT1 in a yeast microsome assay. In this study, the DGAT1 cDNAs of Arabidopsis, Vernonia, soybean, and castor bean were introduced into Arabidopsis. All Vernonia DGAT1-expressing lines showed a significantly higher oil content (49% mean increase compared with the wild-type) followed by soybean and castor bean. Most Arabidopsis DGAT1-overexpressing lines did not show a significant increase. In addition to these four DGAT1 genes, sunflower, Jatropha, and sesame DGAT1 genes were introduced into a TAG biosynthesis-defective yeast mutant. In the yeast expression culture, DGAT1s from Arabidopsis, castor bean, and soybean only slightly increased the TAG content; however, DGAT1s from Vernonia, sunflower, Jatropha, and sesame increased TAG content >10-fold more than the former three DGAT1s. Three amino acid residues were characteristically common in the latter four DGAT1s. Using soybean DGAT1, these amino acid substitutions were created by site-directed mutagenesis and substantially increased the TAG content.


Arabidopsis , Diacylglycerol O-Acyltransferase , Plant Oils , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diglycerides , Ricinus/genetics , Ricinus/metabolism , Saccharomyces cerevisiae , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism , Triglycerides/metabolism
6.
Plant Sci ; 315: 111130, 2022 Feb.
Article En | MEDLINE | ID: mdl-35067300

Soil salinization is a major factor impacting modern agricultural production, and alkaline soils contain large amounts of NaHCO3. Therefore, understanding plant tolerance to high levels of NaHCO3 is essential. In this study, a transcriptome analysis of shoot and root tissues of wild-type Arabidopsis thaliana was conducted at 0, 4, 12, 24 and 48 h after exposure to a 3 mM NaHCO3 stress. We focused on differentially expressed genes (DEGs) in roots identified in the early stages (4 h and 12 h) of the NaHCO3 stress response that were enriched in GO term, carboxylic acid metabolic process, and utilize HCO3-. Six genes were identified that exhibited similar expression patterns in both the RNA-seq and qRT-PCR data. We also characterized the phenotypic response of AtMCCA-overexpressing plants to carbonate stress, and found that the ability of AtMCCA-overexpressing plants to tolerate carbonate stress was enhanced by the addition of biotin to the growth medium.


Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Adaptation, Physiological/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Carbamates/adverse effects , Transcriptome , Gene Expression Regulation, Plant , Genes, Plant
7.
Gene ; 809: 146010, 2022 Jan 30.
Article En | MEDLINE | ID: mdl-34688814

Synthetic biology requires well-characterized biological parts that can be combined into functional modules. One type of biological parts are transcriptional regulators and their cognate operator elements, which enable to either generate an input-specific response or are used as actuator modules. A range of regulators has already been characterized and used for orthogonal gene expression engineering, however, previous efforts have mostly focused on bacterial regulators. This work aims to design and explore the use of an archaeal TetR family regulator, FadRSa from Sulfolobus acidocaldarius, in a bacterial system, namely Escherichia coli. This is a challenging objective given the fundamental difference between the bacterial and archaeal transcription machinery and the lack of a native TetR-like FadR regulatory system in E. coli. The synthetic σ70-dependent bacterial promoter proD was used as a starting point to design hybrid bacterial/archaeal promoter/operator regions, in combination with the mKate2 fluorescent reporter enabling a readout. Four variations of proD containing FadRSa binding sites were constructed and characterized. While expressional activity of the modified promoter proD was found to be severely diminished for two of the constructs, constructs in which the binding site was introduced adjacent to the -35 promoter element still displayed sufficient basal transcriptional activity and showed up to 7-fold repression upon expression of FadRSa. Addition of acyl-CoA has been shown to disrupt FadRSa binding to the DNA in vitro. However, extracellular concentrations of up to 2 mM dodecanoate, subsequently converted to acyl-CoA by the cell, did not have a significant effect on repression in the bacterial system. This work demonstrates that archaeal transcription regulators can be used to generate actuator elements for use in E. coli, although the lack of ligand response underscores the challenge of maintaining biological function when transferring parts to a phylogenetically divergent host.


Archaeal Proteins/genetics , Escherichia coli/genetics , Genetic Engineering/methods , Transcription Factors/genetics , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Binding Sites , Escherichia coli/drug effects , Escherichia coli/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Isopropyl Thiogalactoside/pharmacology , Laurates/pharmacology , Microorganisms, Genetically-Modified , Operator Regions, Genetic , Promoter Regions, Genetic , Repressor Proteins/genetics , Sulfolobus acidocaldarius/genetics
8.
J Biol Chem ; 298(1): 101474, 2022 01.
Article En | MEDLINE | ID: mdl-34896395

Mycofactocin (MFT) is a ribosomally synthesized and post-translationally-modified redox cofactor found in pathogenic mycobacteria. While MFT biosynthetic proteins have been extensively characterized, the physiological conditions under which MFT biosynthesis is required are not well understood. To gain insights into the mechanisms of regulation of MFT expression in Mycobacterium smegmatis mc2155, we investigated the DNA-binding and ligand-binding activities of the putative TetR-like transcription regulator, MftR. In this study, we demonstrated that MftR binds to the mft promoter region. We used DNase I footprinting to identify the 27 bp palindromic operator located 5' to mftA and found it to be highly conserved in Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium ulcerans, and Mycobacterium marinum. To determine under which conditions the mft biosynthetic gene cluster (BGC) is induced, we screened for effectors of MftR. As a result, we found that MftR binds to long-chain acyl-CoAs with low micromolar affinities. To demonstrate that oleoyl-CoA induces the mft BGC in vivo, we re-engineered a fluorescent protein reporter system to express an MftA-mCherry fusion protein. Using this mCherry fluorescent readout, we show that the mft BGC is upregulated in M. smegmatis mc2155 when oleic acid is supplemented to the media. These results suggest that MftR controls expression of the mft BGC and that MFT production is induced by long-chain acyl-CoAs. Since MFT-dependent dehydrogenases are known to colocalize with acyl carrier protein/CoA-modifying enzymes, these results suggest that MFT might be critical for fatty acid metabolism or cell wall reorganization.


Acyl Coenzyme A , Bacterial Proteins , Mycobacterium , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , Mycobacterium/enzymology , Mycobacterium/metabolism , Mycobacterium marinum/metabolism , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/metabolism , Oxidation-Reduction
9.
Metab Eng ; 69: 262-274, 2022 01.
Article En | MEDLINE | ID: mdl-34883244

Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.


Esters , Metabolic Engineering , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Esters/metabolism , Ethanol/metabolism
10.
Hum Mol Genet ; 31(7): 1115-1129, 2022 03 31.
Article En | MEDLINE | ID: mdl-34718578

To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency (MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner, we studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up study were performed. We showed that fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers (aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. In conclusion, fibers with cracks, aRRFs and diffuse decreased SDH activity could distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.


Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Acyl Coenzyme A/genetics , Death Domain Receptor Signaling Adaptor Proteins/genetics , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Follow-Up Studies , Guanine Nucleotide Exchange Factors/genetics , Humans , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Muscle Weakness/pathology , Muscle, Skeletal/metabolism , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Retrospective Studies , Riboflavin/genetics , Riboflavin/therapeutic use
11.
PLoS One ; 16(10): e0257478, 2021.
Article En | MEDLINE | ID: mdl-34618820

BACKGROUND: Montbretins are rare specialized metabolites found in montbretia (Crocosmia x crocosmiiflora) corms. Montbretin A (MbA) is of particular interest as a novel therapeutic for type-2 diabetes and obesity. There is no scalable production system for this complex acylated flavonol glycoside. MbA biosynthesis has been reconstructed in Nicotiana benthamiana using montbretia genes for the assembly of MbA from its various different building blocks. However, in addition to smaller amounts of MbA, the therapeutically inactive montbretin B (MbB) was the major product of this metabolic engineering effort. MbA and MbB differ in a single hydroxyl group of their acyl side chains, which are derived from caffeoyl-CoA and coumaroyl-CoA, respectively. Biosynthesis of both MbA and MbB also require coumaroyl-CoA for the formation of the myricetin core. Caffeoyl-CoA and coumaroyl-CoA are formed in the central phenylpropanoid pathway by acyl activating enzymes (AAEs) known as 4-coumaroyl-CoA ligases (4CLs). Here we investigated a small family of montbretia AAEs and 4CLs, and their possible contribution to montbretin biosynthesis. RESULTS: Transcriptome analysis for gene expression patterns related to montbretin biosynthesis identified eight different montbretia AAEs belonging to four different clades. Enzyme characterization identified 4CL activity for two clade IV members, Cc4CL1 and Cc4CL2, converting different hydroxycinnamic acids into the corresponding CoA thioesters. Both enzymes preferred coumaric acid over caffeic acid as a substrate in vitro. While expression of montbretia AAEs did not enhance MbA biosynthesis in N. benthamiana, we demonstrated that both Cc4CLs can be used to activate coumaric and caffeic acid towards flavanone biosynthesis in yeast (Saccharomyces cerevisiae). CONCLUSIONS: Montbretia expresses two functional 4CLs, but neither of them is specific for the formation of caffeoyl-CoA. Based on differential expression analysis and phylogeny Cc4CL1 is most likely involved in MbA biosynthesis, while Cc4CL2 may contribute to lignin biosynthesis. Both Cc4CLs can be used for flavanone production to support metabolic engineering of MbA in yeast.


Acyl Coenzyme A/metabolism , Flavones/metabolism , Hypoglycemic Agents/metabolism , Iridaceae/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Trisaccharides/metabolism , Acyl Coenzyme A/genetics , Biosynthetic Pathways , Flavones/genetics , Gene Expression Regulation, Plant , Genetic Engineering , Iridaceae/genetics , Ligases/genetics , Metabolic Engineering , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Trisaccharides/genetics
12.
Sci Rep ; 11(1): 20842, 2021 10 21.
Article En | MEDLINE | ID: mdl-34675283

3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is a crucial enzyme in the ergosterol biosynthesis pathway. The aim of this study was to obtain, purify, characterize, and overexpress five point mutations in highly conserved regions of the catalytic domain of Candida glabrata HMGR (CgHMGR) to explore the function of key amino acid residues in enzymatic activity. Glutamic acid (Glu) was substituted by glutamine in the E680Q mutant (at the dimerization site), Glu by glutamine in E711Q (at the substrate binding site), aspartic acid by alanine in D805A, and methionine by arginine in M807R (the latter two at the cofactor binding site). A double mutation, E680Q-M807R, was included. Regarding recombinant and wild-type CgHMGR, in vitro enzymatic activity was significantly lower for the former, as was the in silico binding energy of simvastatin, alpha-asarone and the HMG-CoA substrate. E711Q displayed the lowest enzymatic activity and binding energy, suggesting the importance of Glu711 (in the substrate binding site). The double mutant CgHMGR E680Q-M807R exhibited the second lowest enzymatic activity. Based on the values of the kinetic parameters KM and Vmax, the mutated amino acids appear to participate in binding. The current findings provide insights into the role of residues in the catalytic site of CgHMGR.


Acyl Coenzyme A/genetics , Candida glabrata/genetics , Fungal Proteins/genetics , Point Mutation , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Binding Sites , Candida glabrata/chemistry , Candida glabrata/metabolism , Catalytic Domain , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Models, Molecular , Phylogeny , Substrate Specificity
13.
mBio ; 12(5): e0229821, 2021 10 26.
Article En | MEDLINE | ID: mdl-34579580

Polyketides are one of the largest categories of secondary metabolites, and their biosynthesis is initiated by polyketide synthases (PKSs) using coenzyme A esters of short fatty acids (acyl-CoAs) as starter and extender units. In this study, we discover a universal regulatory mechanism in which the starter and extender units, beyond direct precursors of polyketides, function as ligands to coordinate the biosynthesis of antibiotics in actinomycetes. A novel acyl-CoA responsive TetR-like regulator (AcrT) is identified in an erythromycin-producing strain of Saccharopolyspora erythraea. AcrT shows the highest binding affinity to the promoter of the PKS-encoding gene eryAI in the DNA affinity capture assay (DACA) and directly represses the biosynthesis of erythromycin. Propionyl-CoA (P-CoA) and methylmalonyl-CoA (MM-CoA) as the starter and extender units for erythromycin biosynthesis can serve as the ligands to release AcrT from PeryAI, resulting in an improved erythromycin yield. Intriguingly, anabolic pathways of the two acyl-CoAs are also suppressed by AcrT through inhibition of the transcription of acetyl-CoA (A-CoA) and P-CoA carboxylase genes and stimulation of the transcription of citrate synthase genes, which is beneficial to bacterial growth. As P-CoA and MM-CoA accumulate, they act as ligands in turn to release AcrT from those targets, resulting in a redistribution of more A-CoA to P-CoA and MM-CoA against citrate. Furthermore, based on analyses of AcrT homologs in Streptomyces avermitilis and Streptomyces coelicolor, it is believed that polyketide starter and extender units have a prevalent, crucial role as ligands in modulating antibiotic biosynthesis in actinomycetes. IMPORTANCE Numerous antibiotics are derived from polyketides, whose biosynthesis is accurately controlled by transcriptional regulators that respond to diverse physiological or environmental signals. It is generally accepted that antibiotics or biosynthetic intermediates serve as effectors to modulate their production in actinomycetes. Our study unprecedentedly demonstrates that the direct precursors of polyketide, propionyl-CoA and methylmalonyl-CoA, play a role as ligands to modulate erythromycin biosynthesis in Saccharopolyspora erythraea. More importantly, the two acyl-CoAs as ligands could adjust their own supplies by regulating the acetyl-CoA metabolic pathway so as to well settle the relationship between cellular growth and secondary metabolism. Significantly, polyketide starter and extender units have a universal role as ligands to coordinate antibiotic biosynthesis in actinomycetes. These findings not only expand the understanding of ligand-mediated regulation for antibiotic biosynthesis but also provide new insights into the physiological functions of polyketide starter and extender units in actinomycetes.


Anti-Bacterial Agents/biosynthesis , Erythromycin/biosynthesis , Saccharopolyspora/metabolism , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Ligands , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Promoter Regions, Genetic , Saccharopolyspora/enzymology , Saccharopolyspora/genetics
14.
J Biol Chem ; 297(4): 101083, 2021 10.
Article En | MEDLINE | ID: mdl-34419447

The cytosolic enzyme ethylmalonyl-CoA decarboxylase (ECHDC1) decarboxylates ethyl- or methyl-malonyl-CoA, two side products of acetyl-CoA carboxylase. These CoA derivatives can be used to synthesize a subset of branched-chain fatty acids (FAs). We previously found that ECHDC1 limits the synthesis of these abnormal FAs in cell lines, but its effects in vivo are unknown. To further evaluate the effects of ECHDC1 deficiency, we generated knockout mice. These mice were viable, fertile, showed normal postnatal growth, and lacked obvious macroscopic and histologic changes. Surprisingly, tissues from wild-type mice already contained methyl-branched FAs due to methylmalonyl-CoA incorporation, but these FAs were only increased in the intraorbital glands of ECHDC1 knockout mice. In contrast, ECHDC1 knockout mice accumulated 16-20-carbon FAs carrying ethyl-branches in all tissues, which were undetectable in wild-type mice. Ethyl-branched FAs were incorporated into different lipids, including acylcarnitines, phosphatidylcholines, plasmanylcholines, and triglycerides. Interestingly, we found a variety of unusual glycine-conjugates in the urine of knockout mice, which included adducts of ethyl-branched compounds in different stages of oxidation. This suggests that the excretion of potentially toxic intermediates of branched-chain FA metabolism might prevent a more dramatic phenotype in these mice. Curiously, ECHDC1 knockout mice also accumulated 2,2-dimethylmalonyl-CoA. This indicates that the broad specificity of ECHDC1 might help eliminate a variety of potentially dangerous branched-chain dicarboxylyl-CoAs. We conclude that ECHDC1 prevents the formation of ethyl-branched FAs and that urinary excretion of glycine-conjugates allows mice to eliminate potentially deleterious intermediates of branched-chain FA metabolism.


Acyl Coenzyme A/metabolism , Carboxy-Lyases/deficiency , Fatty Acids/metabolism , Acyl Coenzyme A/genetics , Animals , Carboxy-Lyases/metabolism , Fatty Acids/genetics , Mice , Mice, Knockout
15.
Nucleic Acids Res ; 49(14): 8037-8059, 2021 08 20.
Article En | MEDLINE | ID: mdl-34259319

Recent studies demonstrate that histones are subjected to a series of short-chain fatty acid modifications that is known as histone acylations. However, the enzymes responsible for histone acylations in vivo are not well characterized. Here, we report that HBO1 is a versatile histone acyltransferase that catalyzes not only histone acetylation but also propionylation, butyrylation and crotonylation both in vivo and in vitro and does so in a JADE or BRPF family scaffold protein-dependent manner. We show that the minimal HBO1/BRPF2 complex can accommodate acetyl-CoA, propionyl-CoA, butyryl-CoA and crotonyl-CoA. Comparison of CBP and HBO1 reveals that they catalyze histone acylations at overlapping as well as distinct sites, with HBO1 being the key enzyme for H3K14 acylations. Genome-wide chromatin immunoprecipitation assay demonstrates that HBO1 is highly enriched at and contributes to bulk histone acylations on the transcriptional start sites of active transcribed genes. HBO1 promoter intensity highly correlates with the level of promoter histone acylation, but has no significant correlation with level of transcription. We also show that HBO1 is associated with a subset of DNA replication origins. Collectively our study establishes HBO1 as a versatile histone acyltransferase that links histone acylations to promoter acylations and selection of DNA replication origins.


Chromatin/genetics , Histone Acetyltransferases/genetics , Histones/genetics , Acetyl Coenzyme A/genetics , Acyl Coenzyme A/genetics , Acylation/genetics , DNA Replication/genetics , Homeodomain Proteins/genetics , Humans , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/genetics , Replication Origin/genetics , Tumor Suppressor Proteins/genetics
16.
mBio ; 12(3): e0053021, 2021 06 29.
Article En | MEDLINE | ID: mdl-34182779

Penicillin binding protein 2a (PBP2a)-dependent resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact ß-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to ß-lactam antibiotics. IMPORTANCEmecA-dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, sucC, increased susceptibility to ß-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of ß-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome ß-lactam resistance.


Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , beta-Lactams/pharmacology , Acyl Coenzyme A/analysis , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Mutation , Proteome , beta-Lactam Resistance
17.
J Photochem Photobiol B ; 220: 112210, 2021 Jul.
Article En | MEDLINE | ID: mdl-34000487

Amaranths are recognized by their high nutritive value and their natural tolerance to environmental stresses. In this study, physiological differences in response to water stress were compared between A. hybridus, a wild species considered as weed, and A. hypochondriacus, the most cultivated species for grain production, under the hypothesis that wild species have better adaptation to stress. In both species, photosynthetic parameters, pigments, and gene expression of selected genes were assessed. Biomass, effective quantum efficiency (ΦPSII), photochemical quenching (qP), and electron transport rate (ETR) values were reduced only in A. hybridus due to water deficit. Drought stress promoted proline accumulation by twice in A. hybridus but until three times in A. hypochondriacus. In both species, drought stress reduced net assimilation rate (A), transpiration rate (E), stomatal conductance (gs), and the expression of phosphoenol pyruvate carboxylase (PEPC). While, maximum quantum efficiency (Fv/Fm), chlorophyll, betacyanins, and the expression of ribulose1-5, bisphosphate carboxylase/oxygenase large subunit (LSU) did not change when plants were subjected to water stress. Likewise, both species accumulated total phenolic compounds and Oxalyl-CoA gene was up-regulated in response to drought. Our results have shown that A. hypochondriacus, the cultivated species, exhibited better tolerance to drought than A. hybridus, the wild species, probably due to an unconsciously selected trait during the domestication process.


Amaranthus/metabolism , Biomass , Chlorophyll/metabolism , Droughts , Osmoregulation , Stress, Physiological , Acyl Coenzyme A/genetics , Amaranthus/genetics , Amaranthus/physiology , Down-Regulation , Fluorescence , Genes, Plant , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Photosynthesis
18.
ACS Synth Biol ; 10(3): 632-639, 2021 03 19.
Article En | MEDLINE | ID: mdl-33687200

Adipic acid is a versatile aliphatic dicarboxylic acid. It is applied mainly in the polymerization of nylon-6,6, which accounts for 50.8% of the global consumption market of adipic acid. The microbial production of adipic acid avoids the usage of petroleum resources and the emission of harmful nitrogen oxides that are generated by traditional chemical synthetic approaches. However, in the fermentation process, the low theoretical yield and the usage of expensive inducers hinders the large-scale industrial production of adipic acid. To overcome these challenges, we established an oxygen-dependent dynamic regulation (ODDR) system to control the expression of key genes (sucD, pyc, mdh, and frdABCD) that could be induced to enhance the metabolic flux of the reductive TCA pathway under anaerobic conditions. Coupling of the constitutively expressed adipic acid synthetic pathway not only avoids the use of inducers but also increases the theoretical yield by nearly 50%. After the gene combination and operon structure were optimized, the reaction catalyzed by frdABCD was found to be the rate-limiting step. Further optimizing the relative expression levels of sucD, pyc, and frdABCD improved the titer of adipic acid 41.62-fold compared to the control strain Mad1415, demonstrating the superior performance of our ODDR system.


Adipates/metabolism , Escherichia coli/chemistry , Metabolic Engineering , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Adipates/chemistry , Citric Acid Cycle/genetics , Escherichia coli/metabolism , Oxygen/chemistry , Oxygen/metabolism , Pyruvate Carboxylase/genetics , Pyruvate Carboxylase/metabolism
19.
Arch Biochem Biophys ; 701: 108793, 2021 04 15.
Article En | MEDLINE | ID: mdl-33587905

We have undertaken a spectral deconvolution of the three FADs of EtfAB/bcd to the spectral changes seen in the course of reduction, including the spectrally distinct anionic and neutral semiquinone states of electron-transferring and bcd flavins. We also demonstrate that, unlike similar systems, no charge-transfer complex is observed on titration of the reduced M. elsdenii EtfAB with NAD+. Finally, and significantly, we find that removal of the et FAD from EtfAB results in an uncrossing of the half-potentials of the bifurcating FAD that remains in the protein, as reflected in the accumulation of substantial FAD•- in the course of reductive titrations of the depleted EtfAB with sodium dithionite.


Acyl Coenzyme A/chemistry , Bacterial Proteins/chemistry , Megasphaera elsdenii/enzymology , NADH, NADPH Oxidoreductases/chemistry , NAD/chemistry , Acyl Coenzyme A/genetics , Bacterial Proteins/genetics , Megasphaera elsdenii/genetics , NAD/genetics , NADH, NADPH Oxidoreductases/genetics , Oxidation-Reduction
20.
PLoS One ; 16(1): e0245534, 2021.
Article En | MEDLINE | ID: mdl-33481833

Tuberculosis (TB) is the largest infectious disease with 10 million new active-TB patients and1.7 million deaths per year. Active-TB is an inflammatory disease and is increasingly viewed as an imbalance of immune responses to M. tb. infection. The mechanisms of a switch from latent infection to active disease is not well worked out but a shift in the immune responses is thought to be responsible. Increasingly, the role of gut microbiota has been described as a major influencer of the immune system. And because the gut is the largest immune organ, we aimed to analyze the gut microbiome in active-TB patients in a TB-endemic country, Pakistan. The study revealed that Ruminococcacea, Enetrobactericeae, Erysipelotrichaceae, Bifidobacterium, etc. were the major genera associated with active-TB, also associated with chronic inflammatory disease. Plasma antibody profiles against several M. tb. antigens, as specific biomarkers for active-TB, correlated closely with the patient gut microbial profiles. Besides, bcoA gene copy number, indicative of the level of butyrate production by the gut microbiome was five-fold lower in TB patients compared to healthy individuals. These findings suggest that gut health in TB patients is compromised, with implications for disease morbidity (e.g., severe weight loss) as well as immune impairment.


Dysbiosis/complications , Endemic Diseases , Gastrointestinal Microbiome , Tuberculosis/blood , Tuberculosis/microbiology , Acyl Coenzyme A/genetics , Adult , Biomarkers/blood , Female , Gene Dosage , Humans , Male , Tuberculosis/complications , Tuberculosis/epidemiology
...